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ABSTRACT While quantum computers provide exciting opportunities for information processing, they
currently suffer from noise during computation that is not fully understood. Incomplete noise models have
led to discrepancies between quantum program success rate (SR) estimates and actual machine outcomes.
For example, the estimated probability of success (ESP) is the state-of-the-art metric used to gauge quantum
program performance. The ESP suffers poor prediction since it fails to account for the unique combination of
circuit structure, quantum state, and quantum computer properties specific to each program execution. Thus,
an urgent need exists for a systematic approach that can elucidate various noise impacts and accurately
and robustly predict quantum computer success rates, emphasizing application and device scaling. In this
article, we propose quantum vulnerability analysis (QVA) to systematically quantify the error impact on
quantum applications and address the gap between current success rate (SR) estimators and real quantum
computer results. The QVA determines the cumulative quantum vulnerability (CQV) of the target quan-
tum computation, which quantifies the quantum error impact based on the entire algorithm applied to the
target quantum machine. By evaluating the CQV with well-known benchmarks on three 27-qubit quantum
computers, the CQV success estimation outperforms the estimated probability of success state-of-the-art
prediction technique by achieving on average six times less relative prediction error, with best cases at 30
times, for benchmarks with a real SR rate above 0.1%. Direct application of QVA has been provided that
helps researchers choose a promising compiling strategy at compile time.

INDEX TERMS Quantum computing, resilience, success rate (SR), vulnerability analysis.

I. INTRODUCTION problems. By carefully leveraging quantum superposition,
Excitement surrounds quantum computation due to the great interference, and entanglement, quantum computers are
theoretical potential both fault-tolerant [16], [44] and near- projected to be applied to computational tasks that are cur-

term [30] quantum computers have to solve high-impact rently intractable on today’s most powerful supercomputers.
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FIGURE 1. Quantum experiment workflow with QVA. One complete cycle
ranges from idea conception to real machine run.

Recent progress in quantum hardware has allowed many
prototype quantum computers to emerge, and superconduct-
ing circuits [5], [6], [45] are gaining popularity as one of
the forefront quantum computing technologies. Compared to
other quantum hardware, superconducting quantum comput-
ers have advantages in scalability, microwave control, and
nanosecond-scale gate operation [7], [9], [10].

While promising, superconducting quantum architectures
are currently too error-prone to support programs targeted for
large-scale applications. Near-term superconducting quan-
tum computers suffer from various noise channels that de-
grade both quantum information and computation. This noise
is difficult to fully characterize and causes retention and
operational errors that vary both across-chip and between
quantum computers [46] significantly. Quantum error correc-
tion was developed to accommodate occasional errors during
quantum computation, but current noisy intermediate-scale
quantum (NISQ) era machines do not have the operator pre-
cision or device scale to implement this routine [40]. There-
fore, NISQ quantum machines perform noisy operations as
errors can happen on any physical qubit at any time during
program execution according to error rates characterized by
randomized benchmarking. Fig. 1 shows the full quantum
computing flow that transforms a research idea into an ex-
periment on a real quantum computer.

Improving circuit success rate (SR) is a popular research
topic, but few studies examine the quantum computer and
circuit-dependent errors that result in specific SR. A robust
noise model is essential for accurate SR prediction and devel-
oping SR boost technologies such as error reduction, bypass,
and compression. Unfortunately, existing methods like statis-
tical fault injection [15], [37], [41] and estimated probability
of success (ESP) [47] have accuracy and scaling challenges.
These models neglect the impact of circuit composition on
reported error rates from randomized benchmarking. There-
fore, this article proposes a systematic approach to explain
different errors and provide accurate SR prediction.

While studying ESP, we found that there are gates whose
impact on the output is much more significant than their error
rates. We propose the quantum vulnerability analysis (QVA)
to address these gate error inconsistent behaviors. QVA is a
systematic methodology that performs error modeling based
on randomized benchmarking to determine the success of a
compiled circuit on a targeted quantum computer: the vul-
nerability metric cumulative quantum vulnerability (CQV)
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brief structure of the QVA and how CQV would be used in
an experimental flow to estimate the quantum computer SR
before real machine evaluation.

We extensively validated the accuracy and stability of
QVA in predicting the SR of any given compiled circuits.
This assertion is backed by over 160 K experiments con-
ducted on three state-of-the-art 27-qubit IBM quantum com-
puters [1], spanning six distinguished algorithms with vary-
ing qubit sizes. The compiled circuits were produced using
a variety of compilation strategies and incorporated multiple
error-mitigation techniques to address the diverse noise pro-
files encountered over months of experimentation. This com-
prehensive approach bolsters the extendibility of our analysis
to a broader range of circuits.

All results show that QVA maintains a stable SR estima-
tion via 1-CQYV, providing on average 6x improvements (30x
in the best case) in relative prediction error over the widely
implemented ESP estimator. Additionally, we conduct a case
study to provide the quantum community with a direct appli-
cation of the presented method by choosing promising com-
piling strategies at compile time. Further, our QVA module
provides instructions for reconstructing the model based on
a particular quantum device’s topology and error behavior. It
ensures its compatibility with various superconducting quan-
tum computers, irrespective of their vendor or technology.
Below are the contributions of our article.

1) We design and build a lightweight error modeling
scheme based on QVA and are the first that quantify er-
ror rate impact propagating across the CNOT gates with
the error rate reported by randomized benchmarking.

2) We implement and evaluate a framework that calcu-
lates the unique CQV for an algorithm/machine pair-
ing. We show that the proposed SR estimator, 1-CQV,
outperforms the current state-of-the-art SR estimation,
ESP, by an average 6x less relative prediction error.

3) We highlight the scaling potential of CQV: as an algo-
rithm reaches and surpasses the quantum volume of a
device, CQV-based methods experience more than 10x
improvement in relative prediction error rate compared
with the state of the art.

Il. BACKGROUND AND RELATED WORK

A. NISQ ERA QUANTUM BASICS AND ERROR
CHARACTERIZATION

The flow for generating a quantum executable from a given
algorithm and evaluating it on a quantum chip is illustrated
in Fig. 1. The quantum compiler will be given information
about the target quantum chip and compiler strategy, such as
optimization levels, initial layout method, mapping method,
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etc. Based on that input, the compiler will follow all inter-
mediate compiling steps to generate a compiled circuit for
execution on a quantum computer.

When operating a superconducting quantum computer,
operations may fail due to poor environmental conditions,
inaccurate control, state decoherence, and more. The error
rate associated with an operation, operational error rates, is
closely estimated by randomized benchmarking, described
in detail below, which approximates the extent of failures
without revealing the exact source. The lifetime of a qubit,
or its ability to retain a quantum state, is determined by its
relaxation time (T1) and decoherence time (T2), so-called
retention errors. The decoherence and relaxation time rep-
resent the qubit’s average time to retain its energized and
superimposed states, respectively.

Randomized Benchmarking: Operator performance must
be accurately characterized to use a quantum computer ef-
fectively. Unfortunately, quantum computer noise models
are complex, and it is unscalable to completely character-
ize system noise via process tomography [39]. In addition
to scaling considerations, characterization procedures must
separate noise associated with quantum gates from errors
stemming from state preparation and measurement to ensure
that computation quality can be adequately estimated. Ran-
domized benchmarking [26], [27] is a method of assessing
quantum computer hardware that achieves an average error
rate for operations through a process known as twirling. At
the high level, twirling implements long sequences of ran-
dom gate operations and fits the resulting data to a curve
to determine the average error. Because randomized bench-
marking considers only the exponential decay of sequences
of random gates, sensitivity to measurement noise in the
resulting average error is minimized. Meanwhile, the T1 and
T2 errors on gate operation are included as part of the gate’s
error rate reported by the randomized benchmarking [36].
Randomized benchmarking, while applicable to systems of
any dimension, is predominantly employed for single-qubit
or two-qubit gates [11]. This preference arises from the expo-
nential growth in the number of required gates as the system’s
dimension increases, making the method less practical for
larger systems. Despite this, the technique can be adapted
to pinpoint errors due to unintended crosstalk [12]. No-
tably, IBM utilizes randomized benchmarking in each cali-
bration cycle to ascertain error rates for their quantum com-
puter’s single and two-qubit gates, as reflected in the system’s
properties

Trial counts of correct out put
Success Rate(SR) = - D
Total trail counts.

Success Rate: The SR is used to gauge quantum program
performance on a quantum computer. We compute SR by
dividing the number of correct outputs by total executions,
as shown in (1). For more details on quantum computing, we
refer to [35].
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B. RELATED WORK ON QUANTUM SR ESTIMATION

Early quantum computing research was focused on designing
quantum hardware [28], instruction set architecture [8], and
quantum computer microarchitecture [9], [10], [32], [33].
Afterward, the temporal and spatial noise variation chal-
lenges of SC quantum computers were studied to discover
mapping and allocation-enhanced compilations to make al-
gorithm execution more robust to diverse errors [20], [21],
[22], [31], [46]. Additionally, works such as [18] contribute
to the understanding of how noise, fidelity, and computa-
tional cost interplay in quantum processing, enriching the
broader discourse on quantum system performance. Cur-
rently, the focus of quantum computing is on optimizing the
SR by applying different compiler strategies, such as miti-
gating the effect of errors by enhancing the quantum instruc-
tions [14], [43], decreasing measurement errors [13], [48],
mitigating crosstalk errors [7], [34], combining preexecution
and postexecution software approaches to improve perfor-
mance [19], [47], and compiling with specific constraints [7],
[23].

While many studies have improved quantum program per-
formance, two areas have been underexplored: 1) accurate
SR prediction for specific compiled circuits and 2) better
modeling of error/algorithm relationships in current quantum
systems. Regarding SR prediction methods, popular alterna-
tives to noisy quantum computer simulations include using
machine learning for SR prediction, which treats the entire
computation as a black box [25], developing detailed noise
models, and methods like statistical fault injection [17], [37],
[41] and estimated success probability (ESP) [36], [46], [47]

g =0—g) m=(1-m) @)

Naates NMeasurement

EsP= []g=* [] m. 3)

i=1 i=1

11l. MOTIVATION

A. LIMITATION OF CURRENT SR ESTIMATOR

1) MACHINE LEARNING BASED

The machine learning-based success rate (SR) prediction
method, referenced in [25], simplifies quantum computations
into a black box model. This approach can blur distinctions
between circuits with varied gate parameters and requires
retraining when adapting to different quantum machine sizes.
Data collection for larger machines is resource-intensive, es-
pecially given the method’s requirement to gather data within
a single calibration period. Furthermore, its validation, lim-
ited to specific compiled circuits, may not account for the
complexities of larger machines or diverse error-mitigation
strategies.

2) FAULT INJECTION-BASED

The statistical fault injection method employs classical com-
puters to simulate full-state quantum computations. During
this process, errors are systematically injected into each basis
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gate based on specific triggering probabilities [15]. A very
recent work [37] employs fault injection methods to evalu-
ate quantum vulnerabilities. This study proposes the use of
quantum fault injection to scrutinize circuit vulnerabilities,
with a specific emphasis on radiation-induced errors. We
note, however, that the fault injection approach may face
challenges when applied to large machines. This complex-
ity is accentuated when sampling a broad spectrum of cir-
cuits that exhibit variations in qubit size, circuit depth, and
concurrent fault counts, especially in the context of larger
machines and intricate algorithms. Moreover, the quantum
vulnerability factor (QVF) metric proposed in [37], can face
challenges when assessing circuits reaching the quantum
supremacy, typically seen in machines with 50+ qubits [4].
The QVF calculation hinges on the contrast function, which
necessitates prior knowledge of P(A), the expected correct
state. In the absence of this knowledge, the correct state must
be determined through a noise-free simulation. Relying on
classical computing for full-state quantum circuit simulation
poses a significant challenge, as such methods approach the
limits of classical computational capabilities. Alternatively,
our research introduces a different approach, formulating a
noise model addressing 1- and 2-qubit gate errors, measured
errors, and crosstalk errors. Our methodology is crafted with
a focus on scalability.

3) ESTIMATED SUCCESS PROBABILITY-BASED

The estimated success probability (ESP), shown in (3), pre-
dicts the correct output trial probability by multiplying the
SR, or fidelity, of each gate (g;) and measurement (12}) op-
erations, generated by one minus the gate (g) and measure-
ment (mf) error rate in (2). While ESP considers all circuit
operations, the product treats all gate errors that contribute
to the final SR estimation equally when some gate errors
influence the final circuit outcome more or less than others.
As abasic demonstration of the inaccuracy of ESP modeling,
the gate success products in (3) commute, whereas most op-
erations in quantum circuits are fixed in ordering [29]. Based
on such position differences of the gates on the compiled
circuits, gate errors will contribute differently based on their
propagation path to the measurement, which influence the
estimated SR differently than their original gate error rates.
The detailed analysis is presented in Section III-B. On the
other hand, the simplicity of the ESP metric has made it
frequently applied in quantum compiler design and circuit
optimization efforts as a method to predict quantum program
success on quantum computers [2], [3], [24], [32], [36], [38],
[47]. However, if a better SR estimator was available, the
effectiveness of the aforementioned quantum computer opti-
mizations could potentially experience significant improve-
ments.

We used statistical fault injection, ESP_CP [46], and ESP,
as illustrated in Fig. 2, to estimate the success rate (SR)
of the Bernstein-Vazirani (BV), and quantum Fourier trans-
form (QFT) algorithms across varying scales on three distinct
quantum computers. The BV algorithm was selected due to
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FIGURE 3. ESP for different circuits.

its relatively shallow depth, allowing us to demonstrate the
effects of significant algorithm size increments. Conversely,
the QFT, characterized by deeper circuits, exhibits only mod-
est size increases. For a comprehensive evaluation, both algo-
rithms were tested with three different input sizes, yielding
actual SRs ranging from 70% to 5%. ESP_CP, a variant of
ESP, focuses solely on multiplying the SRs of gates situated
on the critical path. Unfortunately, the predicted outcomes
from both methods show a significant deviation from the
actual SR, with discrepancies ranging from 25% to 60% and
relative error rates ranging between 70% and 470%. Further
compounding the issue, both methods produce SR estima-
tions that diverge sharply from the real machine results as the
circuits increase in size, indicating that their tendency toward
scaling is not well performed.

B. SOME ERRORS MATTER, WHILE OTHERS DO NOT

The ESP model, upon closer examination, presents poten-
tial sources of inaccuracies in SR prediction. Illustrated in
Fig. 3, the ESP model accurately predicts the SR only for
the middle circuit. When considering a compiled circuit, its
final SR results from the product of individual qubit SRs,
which are premeasured. Therefore, only errors impacting a
measurement gate influence the final output.

For scenarios akin to the first circuit, the ESP model tends
to overestimate error rates. Here, the error from the red-
boxed Z gate does not influence the measurement gate, mean-
ing the Z gate’s error only impacts the SR of Q2. Yet, this is
not captured by the subsequent Q1 measurement gate.

Contrastingly, for situations resembling the third circuit,
the ESP model tends to underestimate error rates. Errors orig-
inating from the two red-boxed H gates not only affect the
measurements of their associated qubits but also influence
other qubits via the cNOT gate. Despite this, the gate error
to SR transformation, as outlined in (2), only accounts for
this error once. Any subsequent error impacts on other qubit
measurements arising from error propagation are disregarded
in the ESP model.
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Such observations underscore that certain errors exert
more influence on the final output than others, highlighting
the need for a refined approach. This analysis emphasizes
the importance of taking into account circuit structure and
architectural vulnerabilities when estimating SR on actual
quantum computers.

IV. QUANTUM VULNERABILITY ANALYSIS

A. QVA OVERVIEW

In Section III-B, we discover that the SR of quantum compu-
tation is the outcome of the SR of each qubit being measured.
Each measured qubit’s correctness is influenced by gate er-
rors propagated to it. Our proposed QVA is a systematic
methodology that follows error propagation. The QVA will
estimate the vulnerability of the compiled circuit by perform-
ing error modeling based on the error rates from randomized
benchmarking calibration.

The QVA generates the cumulative quantum vulnerability
(CQV) metric. Definition of CQV: CQV presents the final
circuit’s vulnerability by predicting the failure rate (FR) for
the compiled circuit. We emphasize that the CQV will not
predict the correct result but the possibility of an incorrect
result during runtime. The calculation of 1 — CQV represents
the estimated SR of a compiled circuit on the target machine
calculated with the CQV. In Fig. 4(a), we present the com-
plete workflow of QVA.
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B. CQV DETERMINATION

1) CIRCUIT ARRAY GENERATOR

To understand the error propagation path within a quantum
circuit during runtime, a connection between when an error
occurs and how much it affects the compiled circuit must
be established. For more granularity, we quantify the com-
piled circuit to a finer degree by representing the algorithm
at the cycle level. Cycle-level representation for a quantum
circuit is analogous to the classical electrical circuit diagram
to replace the previous analysis at the level of the complete
compiled circuit. The circuit array generator block transfers
the compiled circuit further to a 2-D array where each el-
ement represents the attributes of the physical qubit at that
cycle, as shown in Fig. 4(b). The circuit array records each
physical qubit’s attribution in every cycle, including the gate
type, gate error, associated virtual qubit, its cumulative SR,
etc. Based on the cycle level compiled circuit, a snapshot of
the operating quantum chip at a given cycle can be linked
with the corresponding cycle in the compiled circuit.

2) CALCULATING (1 —CQV)

The CQV methodology aims to predict the failure rate for
a given compiled circuit on a designated quantum chip by
effectively modeling the errors based on its propagation. The
Calculating 1 — CQV block of Fig. 4(a) will first receive
a circuit array with attributes filled. Next, we perform a
crosstalk error calibration based on [34] and update it to the
gate error by multiplying their SR based on (2). To deter-
mine the SR estimation, which is 1 — CQV, we introduce
an algorithm (referenced as Algorithm 1). This algorithm
progressively updates the cumulative success rate (CSR) of
each physical qubit based on the circuit array, considering
the propagation of errors.

The algorithm initiates by setting the CSR for all entries
in the circuit array to a perfect score, i.e., CSR = 1 (100%
success), as depicted in line 3. Subsequent steps, from lines
3 to 16, loop through all the gates, updating CSR values. For
single-qubit gates, lines 6 and 7 modify the CSR for that gate
by multiplying its total SR with the preceding CSR value of
the same qubit from the last cycle.

Complex operations, like the cNOT gate, necessitate a
deeper understanding. Here, errors from one qubit can cas-
cade to itself and affect the paired qubit. In lines 8—11, for ev-
ery occurrence of such two-qubit interactions in a given com-
piled circuit, we introduce a weight w. This weight, which
lies between 0 and 1, signifies the fraction of cumulative error
originating from the paired qubit that might propagate via the
CNOT gate.

This error propagation model stems from the constraints
imposed by the error rates disclosed through randomized
benchmarking. The intricacy lies in the fact that these re-
ported error rates cannot be disaggregated into individual
types, such as phase, bit, or decoherence errors. Each type
behaves differently when channeled through the cNoOT gate.
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Algorithm 1: Calculate (1 — CQV).
Input: Physical qubits QP;Compiled Circuit Cycles C;
Weight w; Circuit Array CA = [QP][C + 1][Artr.];
Output:(1 — CQV)
(1-Ccov)=1
2: let Attr.gp. . = CAlgpllcl[Attr.] for all Attributes
3: Initialize CSR,, 0 = 1.00 for every qubit at first cycle.
4: for each cycle ¢ from 1 to C + 1 do
5:  for each physical qubit gp in QP do
6 if the gate,) - is 1-qubit gate then
7 CSRgp.c = &yp.c * CSRyp.c—1
8: else if the gate ) . is CNOT gate then
9.
0

crosserror = (1 — CSRyy o) * w

CSRyp.c = gfmc * CSRyp c—1

* (1 — crosserror)

11: end if

12:  end for

13: if any gp in the final swap cycle then

14: swap the CSR,), . and CSR for all swap pairs

10:

qp'.c
15:  endif
16: end for
17:1 = CQV = [T  CSRpe

gategp c=Measure

18: return 1 — CQV

For a target qubit involved in a cNOT gate, its CSR is
computed as a product of its own SR (g%), its preceding CSR,
and the SR inherited from its paired qubit. This inherited SR
factors in only the weighted portion of the cumulative error.
It is crucial to remember that the SR (or the associated error
rate) for any quantum element (qubit, gate, or circuit) can
be deduced using (2), which is based on the complementary
relationship between success and error rates.

For idle cycles in the quantum circuit, we attribute an error
value of zero. In the case of repeated gates, either compiler-
introduced or manually inserted by the programmer, we ap-
point the error value based on the known error rates of such
gates in the target machine.

In conclusion, the 1 — CQV value, which represents the
overall SR prediction, is derived by multiplying the CSRs
of all measurement gates. Upon examining Algorithm 1,
it becomes evident that its complexity is O(G), where G
represents total gate counts for all types. This complexity
arises because the algorithm iteratively checks each physi-
cal qubit’s gate in every cycle to update the corresponding
cumulative SR. Consequently, the algorithm scales linearly
with the gate count, encompassing all gate types, including
ideal gates. This linear scalability of our noise model offers a
significant advancement, facilitating both current NISQ-era
and future quantum computing endeavors without being con-
strained by the limitations of classical computational power.

3) CNOT WEIGHT SELECTION
In Section V, we have provided a study to observe the
weight selection impact for various compiled circuits with
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different error profiles. Then we used a machine learning-
based method to learn the weight value and used it to infer
the proper weight in the CQV calculation. For more details.
Please refer to Section V.

V. DETERMINING CNOT WEIGHT

To accurately predict the real SR, QVA requires a proper
weight value, between zero and one, at compile time to assist
with the CQV calculation. Before identifying the value of
the weight, we first demonstrate the prediction performance
when the weight is set equal to zero or one representing
no error or full error crossover the CNOT gate, respectively.
The compiled circuits of the experiments are generated from
different combinations of compiler settings for four bench-
marks at two different algorithm sizes. The CQV calculation
is performed using the calibration error and execution results
from IBMQ_Montreal on April 1, 2022. As shown in Fig. 5,
though the CQV results with weight set to zero, 1 — CQVp,
are closer to the real SR than ESP, there is still a nontrivial
gap between 1 — CQV}y and the real SR meaning that some
errors are not well represented. Meanwhile, 1 — CQV; sets
the weight to one, which makes the predictions close to zero
all the time and lose track of the real SR, meaning the errors
are being overestimated. The experimental results show that,
for those benchmarks, using zero or one as the weight will
lead to inaccurate predictions. When brute-force performing
the CQV prediction for all the weights with 1% granularity,
we found the correlation between the weight value and its
corresponding 1-CQV prediction is approximately —1. In
other words, among all the weight values, there will always
be one and only one weight value that returns a SR prediction
closest to the real SR, which will be labeled as the best
weight.

Based on such observation, we calculated the best weight
for all compiled circuits generated from combining all the
different algorithms, target machines, and compiled strate-
gies. As shown in Fig. 6, we have plotted the best weight
against the cNOT count of the compiled circuit. The result is
consistent with our expectation—the best weight will be very
arbitrary when the cNOT count is low, but as the cCNOT count
of the compiled circuit increases, the best weight begins to
approach zero and shows an overall decreasing trend.
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After analysis, we found that many factors, such as ma-
chine error properties, compiled circuit properties, etc., in-
fluence the best weight value. To fulfill the need of taking
the graph-like machine information and circuit features into
consideration, we choose a graph neural network (GNN) [42]
and combine it with feed-forward networks to perform the
best weight prediction shown in Fig. 7. The node matrix
represents the information for every physical qubit, including
single-qubit operation error rates. The edge matrix in the
figure presents the CNOT error rates for each physical qubit
pair. The circuit matrix contains information for each qubit’s
operation count, measurement info, and two-qubit operations
count. As shown in Fig. 8, by leveraging the GNN model, we
can provide the weight value with an average 2% difference
from the best weight, which strongly supports an accurate SR
prediction in later execution. The trained model will be used
to infer the best weight for CQV calculation.
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TABLE 1. Benchmarks and Quantum Computer Description

[ Ttem | Description
BV Bernstein-Vazirani
DJ Deutsch-Jozsa
HS Hidden Shift
GHZ Greenberger-Horne-Zeilinger
QFT Quantum Fourier Transform
QPE Quantum Phase Estimation
ibmq_montreal | 27-qubits with Hexagon
ibmq_toronto 27-qubits with Hexagon
ibmq_mumbai | 27-qubits with Hexagon

VI. IMPLEMENTATION

We employ Qiskit [15], a renowned open-source framework
for quantum computing, as the foundation for implement-
ing and assessing our QVA methodology. Our work extends
Qiskit version 0.34.2, enabling it to execute QVA and com-
pute the (1-CQV) for any specified compiled circuit. Our
QVA approach is meticulously crafted to provide an accurate
and efficient estimation of the SR for compiled circuits on
specific quantum machines. To ensure a diverse set of com-
piled circuits, we utilize various combinations of compiling
policies for each benchmark-machine pairing. This approach
integrates a spectrum of error-mitigation techniques at ev-
ery stage, ensuring comprehensive and robust evaluations.
Table 1 describes the backends and benchmarks used in our
evaluation. We repeatedly perform all the algorithms that
range in scale from 4 input qubits to 15 input qubits over
months, which generated 160 K distinctive compiled circuits
captured with diverse noise calibration profiles. To focus on
meaningful results, we ignore experiments that return a real
SR below 0.1%. We chose the state-of-the-art SR estimator
ESP for the baseline and ignored the ESP_CP since it under-
estimates error.

In the experimental flow, we first run the given compiled
circuits on their target quantum computers for the default
8192 trials and log the outputs. Then, we use the Qiskit
simulator to capture the correct result and generate the SR of
the experiment based on the logged output on the classical
computer. For scenarios approaching quantum supremacy,
where classical computers struggle with full-state quantum
circuit simulations, we introduce an alternative method to
ascertain correct results, as detailed in Section VII-B. Now
the experiment’s real performance is known and named real
SR. For each machine, we used the first ten days of data to
perform the GNN training on weight selection and to infer
the weight to assist CQV prediction for the rest of the ex-
periment data. This offline training is a one-time procedure,
and in our experiments, it took approximately an hour on
an NVIDIA 3060 GPU. Then we perform ESP and 1-CQV,
which estimate the real SR based on the calibrated error of
the experiment on the classical computer. The estimated SR
generated from ESP and 1-CQV will be compared with the
real SR. In addition to quantifying the estimation accuracy
directly by performing the absolute difference between the
real and estimated SR, we also use the relative prediction
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FIGURE 10. Average relative predict error for all the benchmarks on
single Quantum machine IBMQ_Montreal.

error metric, which uses the absolute difference divided by
the real SR, to present the accuracy trend of the method while
compensating for increases in the algorithm size resulting in
a decrease in real SR.

VII. RESULTS

A. CQV ACCURACY

1) ALGORITHM SIZE WITHIN QUANTUM VOLUME

Here, we present the CQV prediction performance for all
six benchmarks on the Quantum machines IBMQ_Montreal,
IBMQ_Toronto, and IBMQ_Mumbai. As shown in Fig. 9,
we presented the 1-CQYV prediction accuracy compared with
ESP with varying compiled circuits for a five-qubit QPE al-
gorithm on IBMQ_Montreal on April 5, 2022. The different
configurations are guidelines for the compiler to generate the
final compiled circuit based on the given logical circuit and
target device.

We observe that 1 — CQV is much closer to the real SR
than the ESP. After being shown to the right of Fig. 9, the
average absolute error rate for ESP over all the configura-
tions compared to ground truth SR is 29.8%, while 1 — CQV
achieves an average error of 4.8%. Such an error rate differ-
ence means that 1 — CQV achieves an 84% error reduction
compared to the ESP, which also means the CQV calculation
is adaptable to the variation of errors across different calibra-
tion periods and provides excellent predictions.

As shown in Fig. 10, we present the 1-CQV prediction for
all the benchmarks on the single machine IBMQ_Montreal.
We include experiments with an SR higher than 0.1%. The
relative prediction error is produced by dividing the absolute
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prediction error by the SR. The trend emerges that 1-CQV
prediction outperforms the ESP by achieving an average of
six times less relative prediction error rate and the best im-
provement of 30 times. Meanwhile, the relative prediction
error jumps clearly when the algorithm size increases, which
follows the nature of the benchmark by employing signif-
icantly more two-qubit gates. When increasing algorithm
size, not only does the number of two-qubit gates increase,
but the number of swapping operations also increases. As
shown in Fig. 11, 1-CQV presents a stable and accurate
average relative prediction error across all machines and
benchmarks. Based on the results, we conclude that the CQV
achieved the goal of designing a more precise SR estimator
consistently across different dates, machines, and algorithms
than the state-of-the-art SR estimator.

2) ALGORITHM SIZE BEYOND QUANTUM VOLUME

From the results shown in Figs. 9-11, 1 — CQV proves to
predict SR with a closer distance to the real SR, even when it
falls in the 10%—0.1% range. The primary reason for the low
SR is that the size of the compiled circuits equals or exceeds
the desired quantum volume of the target quantum machine.
Quantum volume can be defined as the product of the number
of virtual qubits and maximum circuit depth supported by the
machine.

After making a full-spectrum comparison among all the
backends and benchmarks, from the observations of the re-
sults, we can say that the CQV has better error modeling than
the ESP noise model. Fig. 10 demonstrates that the CQV
prediction is stable across different algorithms with a much
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TABLE 2. Execution Time Comparison (Seconds)

Algorithm | CX count | ESP Qiskit CQv

QFT_5 59 0.00299 | 1.31142 0.01830
QFT_10 408 0.02004 | 1.86264 0.05310
QFT_20 2657 0.09802 | > 10 mins | 0.25227
QFT_50 26408 0.71115 | N/P 6.01701
QFT_100 157428 1.83842 | N/P 7.82150
QFT_120 208260 3.10630 | N/P 20.4157

lower relative error rate. Additionally, the results show that
CQYV performs much better when the algorithm reaches or
exceeds the quantum volume, which is a valuable property
when the limited quantum volume is the bottleneck of the
current NISQ era. Therefore, we conclude that the 1 — CQV
prediction is accurate across the full spectrum of algorithm
sizes and SRs.

B. SCALABILITY ANALYSIS OF CQV

In the rapidly evolving landscape of quantum computing,
the intricacy of quantum circuits is escalating, bringing us
closer to addressing real-world challenges. As we navigate
this frontier, the need for prediction models that are both
accurate and scalable becomes paramount. Our study, there-
fore, focuses on the scalability of the QVA, examining its
efficiency across a spectrum of quantum circuit sizes.

The QFT was chosen as the benchmark for our evaluation.
With input sizes spanning from 5 to 120 qubits, it is note-
worthy that machines operating with around 50 qubits are
on the threshold of quantum supremacy [4]. Our scalability
experiments for QVA were conducted based on the topology
and error profile of the IBMQ_Washington machine, a state-
of-the-art 127-qubit quantum computer.

To ensure our execution time assessment was both trans-
parent and unbiased, we considered only the inference time
of the GNN, which provides the cNoT weight value, and
the execution time of the CQV noise model. This choice
was made because the GNN training is an offline process,
executed just once. As shown in Table 2, our CQV approach
demonstrated linear scalability, with execution time increas-
ing proportionally with the cNoT gate counts. It is worth
mentioning that the execution of the CQV takes place on
the CPU, including the pretrained GNN to infer the weight
value w. This linear trajectory underscores the potential of
our model to efficiently manage complex quantum circuits
in the future.

However, the full-state quantum circuit simulator-based
approaches face challenges in scalability, particularly with
circuits that exceed 32 qubits. This limitation highlights the
simulator’s constraints when tasked with emulating large-
scale, real-world quantum systems. In contrast, our approach
requires only a fraction of the computational power for esti-
mating SRs. To both validate our predictions and refine our
noise model, particularly for circuits approaching quantum
supremacy, we have devised a novel method: by merging the
original circuit with its inverse and using the input states
as a benchmark, we can effectively measure the circuit’s
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performance and fine-tune our noise model. It is pertinent
to note potential overfitting for specific circuits due to the
reliance on reverse circuits. Nevertheless, we believe our ap-
proach adds a valuable technique to the toolbox for exploring
circuit vulnerabilities.

Furthermore, while our preliminary results on QVA’s scal-
ability are promising, they represent just the tip of the
iceberg. Our model’s design is inherently versatile, unen-
cumbered by specific error rates, gate types, or circuit struc-
tures. This adaptability not only allows for the integration of
partial error correction techniques in larger devices but also
hints at the vast potential for future optimization strategies,
further refining the SR estimation process.

VIIl. CASE STUDY: CHOOSING COMPILING STRATEGY

The current access modes for quantum computers are either
limited free access to small machines or expensive hourly
institutional subscriptions to large devices. Naturally, users
will want the highest SR with as few executions as possible
to save time, money, and access. However, finding the best
combination among all the available machines and compiler
configurations to achieve the best performance is challeng-
ing. The search space will grow enormously when also con-
sidering compilation optimizations. Without performing a
brute-force execution of all the combinations, identifying the
best strategy is challenging. Since CQYV is more accurate than
ESP, we would naturally ask, could CQV be used to suggest
the compiling configuration with the optimal performance?
To answer that, we performed both ESP and CQV for all the
combinations of compiler configuration at compile time for
the HS benchmark and picked the two configurations with the
highest estimated SR for both ESP and CQV. Based on the
result, the CQV outperforms the ESP across all algorithm
sizes. One example of HS at level 2 optimization and six
input states is shown in Fig. 12. It is clear that the two choices
with the highest 1-CQV estimation not only have less predic-
tion error but also result in the highest real SR. In contrast,
the top two high-ranking ESP configurations result in the 4th
and 5th best in real SR out of nine combinations. Moreover, it
will be the 7th and 8th choice of ESP to pick up the compiler
configurations for the highest real SR. For the computation
overhead, executing CQV prediction is acceptable since the
calculation is done on a classical computer. Furthermore,
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since the execution of all the SR predictions is independent
of each other, it is possible to perform parallel computing for
different compiler strategies, and the individual prediction
overhead is discussed in Section VII-B. In this case, the CQV
can guide a user to choose a more effective and reliable com-
piler strategy with a higher SR than ESP. No prediction can
be perfect (that would be computationally intractable), but
CQYV improves prediction enough to be usable for compiler
decisions.

IX. CONCLUSION

In the rapidly evolving field of quantum computing, predict-
ing the SR of a quantum circuit remains a challenging task.
Existing methodologies often fall short, either by oversim-
plifying the error model or by not adequately accounting for
the intricacies of error propagation within complex quantum
circuits. Recognizing this gap, we present the QVA in this
article, a robust systematic approach to determining a given
computation’s CQV. The QVA offers a nuanced, detailed
method to estimate the failure rate of a given compiled cir-
cuit, considering the effects of individual gate errors, their
cumulative influence, and the unique properties of quantum
gates such as CNOT. To establish the efficacy of QVA, we
subjected it to rigorous validation on cutting-edge quantum
machines using well-known benchmarks. The results demon-
strated that QVA consistently outperformed the prevalent SR
estimator, ESP, and showcased linear scalability. On average,
our model exhibited a sixfold reduction in the relative pre-
diction error rate compared to ESP. Such accuracy not only
bolsters confidence in our method but also has far-reaching
implications at both the hardware and software levels.
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